S0957-4166(96)00076-6 ## Synthesis of Enantiopure 3-Hydroxymethylchromanes via Intramolecular Nitrone Cycloaddition Gianluigi Broggini, Franco Folcio, Nicola Sardone, Milko Sonzogni, and Gaetano Zecchi* ^a Dipartimento di Chimica Organica e Industriale dell'Università di Milano, via Golgi 19, 20133 Milano, Italy ^b Centro Grandi Strumenti dell'Università di Pavia, via Bassi 21, 27100 Pavia, Italy Abstract: Enantiopure (R) and (S) 3-hydroxymethylchromanes were prepared by the intramolecular nitrone cycloaddition strategy, starting from allyl-type ethers of 2-hydroxybenzaldehydes and using (R)-N- $(\alpha$ -phenylethyl)hydroxylamine as chiral auxiliary. The importance of the chromane skeleton in the area of biologically active compounds is well recognised. ¹⁻⁶ 3-Hydroxymethylchromanes find application as intermediates in the synthesis of α -adrenergic blocking agents ⁷ and nootropic drugs. ⁸ These compounds, however, are hitherto unreported in optically active form. The present paper just describes the preparation of enantiopure 3-hydroxymethylchromanes by means of the intramolecular nitrone cycloaddition strategy. ⁹ Copyright © 1996 Elsevier Science Ltd ## Result and Discussion The starting materials of our synthetic sequence were allyl-type ethers of 2-hydroxybenzaldehydes 1 (Scheme 1). These substrates were reacted with (R)-N- $(\alpha$ -phenylethyl)hydroxylamine 2^{10} in boiling toluene in $$\begin{array}{c} \text{Me} \\ \text{Ph} \\ \text{R}^2 \\ \text{H}_{\text{II}} \\ \text{R}^3 \\ \text{R}^3 \\ \text{R}^3 \\ \text{R}^4 \\ \text{R}^3 \\ \text{R}^4 \\ \text{R}^5 \\ \text{R}^5 \\ \text{R}^5 \\ \text{R}^6 \\ \text{R}^6 \\ \text{R}^7 \\ \text{R}^7 \\ \text{R}^8 \\ \text{R}^8 \\ \text{R}^8 \\ \text{R}^8 \\ \text{R}^8 \\ \text{R}^8 \\ \text{R}^9 \text$$ order to generate the functionalized nitrones 3, which we had perceived prone towards the intramolecular cycloaddition onto the ethylenic bond. In all cases, the reaction resulted in a mixture of the two isomeric products 4 and 5, both of which were obtained in the pure state by chromatography. Reaction times, product ratios, and isolation yields are given in Table 1. | Table 1. Reaction | of Aldehydes 1 | with Hydroxylamine 2 | |-------------------|----------------|----------------------| |-------------------|----------------|----------------------| | Entry | Reaction | Overall | Product ratio ^a | | Isolation y | Isolation yields (%) ^b | | |-------|----------|-----------|----------------------------|----|-------------|-----------------------------------|--| | | time (h) | yield (%) | 4 : | 5 | 4 | 5 | | | a | 12 | 95 | 65 : | 35 | 40 | 28 | | | b | 20 | 95 | 60 : | 40 | 32 | 33 | | | c | 20 | 90 | 65 : | 35 | 53 | 27 | | | d | 36 | 90 | 60 : | 40 | 32 | 15 | | ^a From the ¹H-NMR spectrum of the crude product mixture. For the cycloadducts 4a-c and 5a-c, the observed coupling constants of the isoxazolidinic hydrogens supported a *cis* relationship, thus indicating that the relative configuration of the newly created stereocentres was the same in all cases. The absolute configuration was established on submitting the major product derived from 1b (i.e. 4b) to the X-ray diffractometric analysis (see Figure 1). The same stereochemistry was reasonably ascribed to the other preferred cycloadducts 4a and 4c. In the case of 4d and 5d, the NMR spectroscopy gave no indication on the stereochemical relationship, which in fact was determined by means of the X-ray diffractometric analysis of the predominant isomer 4d (see Figure 2). Fig. 1. Molecular structure of 4b Fig. 2. Molecular structure of 4d At this point of our work, we undertook a systematic study on the behaviour of 4a under hydrogenolytic conditions. First of all, compound 4a was found to be inert in the absence of acidic species. In ^b After chromatographic separation. methanolic solution in the presence of Raney nickel and hydrogen chloride, the hydrogenation of 4a furnished the aminoalcohol 6 in 60% yield (Scheme 2). However, upon hydrogenation in the same solvent in the presence of Pd(OH)₂/C and hydrogen chloride, compound 4a led to a complex mixture, whose chromatographic treatment allowed isolation of 6, 7, and 8. Control experiments showed that 7 changed to 8 under the conditions of its formation, while 6 was reluctant to further hydrogenolysis. Finally, in acetic acid in the presence of Pd/C, the hydrogenation of compound 4a gave 8 as the predominant product. On the basis of the latter result, we submitted all cycloadducts to hydrogenation in acetic acid in the presence of Pd/C. However, different patterns of behaviour were observed for the different substrates (see Table 2 and Chart 1). While 5a behaved as 4a thus giving 9, 4b and 5b led to the corresponding alcohols 10 and 11 provided that the reaction was stopped after the absorption of the stoicheiometric amount of hydrogen. When the reaction was prolonged until no more hydrogen was consumed, the products were 12 and 13 respectively. On the other hand, the hydrogenolysis of 4d and 5d resulted in the aminoalcohols 14 and 15. Finally, in the case of 4c and 5c, owing to the concomitant reduction of the nitro group, the hydrogenation furnished the polifunctional products 16 and 17. The enantiomeric purity of the final 3-hydroxymethyl-chromanes was tested in the case of 8 and 9 via the corresponding esters with the R enantiomer of Moscher's acid. It was confirmed to be total within the experimental error limits of the ¹H-NMR spectroscopy at 300 MHz. Table 2. Hydrogenation of 4 and 5 in AcOH in the Presence of Pd/C | Substrate | Product | Yield (%) | $[\alpha]_D^{25}$ | |-----------------|---------|-----------|-------------------| | | 8 | 52 | -19 | | 5a | 9 | 54 | +19 | | 4b ^a | 10 | 66 | -8.4 | | | 12 | 62 | -14 | | 5b ^a | 11 | 68 | +8.4 | | | 13 | 66 | +14 | | 4c | 16 | 53 | -4 3 | | 5e | 17 | 51 | +41 | | 4d | 14 | 88 | -59 | | 5d | 15 | 89 | +56 | See text. Chart 1 8: $$R^1 = R^2 = H$$ 10: $$R^1$$, $R^2 = -(CH = CH)_2 -$ 12 : $$R^1$$, $R^2 = -(CH_2)_4$ 14: $R^1 = H$; $R^3 = Me$ 16: $R^1 = NH_2$; $R^3 = H$ 9: $$R^1 = R^2 = H$$ 11: $$R^1$$, $R^2 = -(CH = CH)_2 -$ 13 : $$R^1$$, $R^2 = -(CH_2)_4$ 15: $R^1 = H$; $R^3 = Me$ 17: R1 = NH2; R3 = H It is to be noticed that the intramolecular cycloaddition of 3 proceeds in fully diastereoselective mode as concerns the relative configuration of the two new stereocentres, while the asymmetry induced by the chiral pendant is modest. Nevertheless, the described entry to enantiopure 3-hydroxymethylchromanes seems to be of synthetic value in the light of (i) the inexpensiveness of the chiral auxiliary, (ii) the ability to obtain both diastereoisomeric cycloadducts in the pure state, and (iii) the good yields of the hydrogenolytic cleavage. ## **Experimental Section:** Melting points were determined using a Büchi apparatus and are uncorrected. IR spectra were recorded on a FT-IR Perkin-Elmer 1725X spectrophotometer. ¹H-NMR spectra were obtained using a Bruker 300 MHz apparatus; chemical shifts are given in ppm from SiMe₄, with coupling constants in Hz. Mass spectra were obtained with a VG-70EQ apparatus. The optical rotations were measured using a Perkin-Elmer 241 polarimeter, with a 1 dm pathlength at 25 °C. Reaction of aldehyde 1a with hydroxylamine 2. Hydroxylamine 2 (1.2 g, 8.8 mmol) and CaCl₂ (1.0 g, 8.8 mmol) were added to a solution of aldehyde $1a^{11}$ (1.2 g, 7.3 mmol) in toluene (140 ml). The mixture was refluxed for 12 h. After filtration of the suspension and evaporation of the solvent, the residue was chromatographed on silica gel column with light petroleum/ethyl acetate 5:1 as eluent. The first fractions gave (+)-(αR , 3aS, 9bR)-1-(α -phenylethyl)-1,3a,4,9b-tetrahydro-3*H*-benzopyrano[4,3-*c*]isoxazole (5a) (0.57 g, 28%). M.p. 120-121 °C (hexane); ¹H-NMR (CDCl₃) δ 1.56 (3H, d, J=6.7), 2.92-3.03 (1H, m), 3.78 (1H, dd, J=5.2, 8.1), 4.03-4.20 (4H, overlapping), 4.31 (1H, d, J=8.5), 6.84 (1H, d, J=8.2), 6.98 (1H, dd, J=7.3, 7.3), 7.16 (1H, ddd, J=1.5, 7.8, 7.8), 7.26-7.48 (6H, m); $[\alpha]_D^{25} = +29$ (c = 0.30 CHCl₃); MS: m/z = 281 (M⁺); Anal. Calcd. for $C_{18}H_{19}NO_2$: C, 76.83; H, 6.81; N, 4.98. Found: C, 76.86; H, 6.76; N, 5.01. The last fractions gave (+)-(αR , 3aR, 9bS)-1-(α -phenylethyl)-1,3a,4,9b-tetrahydro-3*H*-benzopyrano[4,3-*c*]isoxazole (4a) (0.82 g, 40%). M.p. 138-139 °C (hexane/benzene); ¹H-NMR (CDCl₃) δ 1.50 (3H, d, J=6.5), 3.17-3.26 (1H, m), 3.92 (1H, q, J=6.5), 4.03-4.22 (4H, overlapping), 4.35 (1H, dd, J=8.1, 9.5), 6.74 (1H, d, J=8.2), 6.86 (1H, dd, J=7.0, 7.0), 7.05 (1H, d, J=7.6), 7.28-7.40 (6H, m); $[\alpha]_D^{25} = +70$ (c = 0.30 CHCl₃); MS: m/z = 281 (M⁺); Anal. Calcd. for $C_{18}H_{19}NO_2$: C, 76.83; H, 6.81; N, 4.98. Found: C, 76.78; H, 6.71; N, 5.03. The above cycloadducts counted for 95% of the crude reaction mixture (NMR analysis). Reaction of aldehyde 1b with hydroxylamine 2. Hydroxylamine 2 (2.5 g, 18.0 mmol) and CaCl₂ (2.0 g, 18.0 mmol) were added to a solution of aldehyde 1b¹² (3.2 g, 15.0 mmol) in toluene (300 ml). The mixture was refluxed for 20 h. After filtration of the suspension and evaporation of the solvent, the residue was chromatographed on silica gel column with light petroleum/ethyl acetate 4:1 as eluent. The first fractions gave (+)- $(\alpha R, 3aR, 11cS)$ -1- $(\alpha$ -phenylethyl)-1.3a, 4.11c-tetrahydro-3H-naphtho[1', 2'; 5.6]pyrano[4.3-c]isoxazole (4b) (1.58 g, 32%). M.p. 198-200 °C (hexane/benzene); ¹H-NMR (CDCl₃) δ 1.53 (3H, d, J=6.7), 3.53-3.60 (1H, m), 4.00-4.06 (2H, overlapping), 4.24-4.45 (3H, overlapping), 4.90 (1H, d, J=8.0), 6.74 (1H, d, J=8.5), 6.96-7.05 (2H, m), 7.21 (1H, dd, J=7.5, 7.5), 7.45-7.64 (7H, m); $[\alpha]_0^{25} = +240$ (c = 0.22 CHCl₃); MS: m/z = 331(M⁺); Anal. Calcd. for C₂₂H₂₁NO₂: C, 79.73; H, 6.39; N, 4.23. Found: C, 79.80; H, 6.45; N, 4.19. The last fractions gave (-)- $(\alpha R, 3aS, 11cR)$ -1- $(\alpha$ -phenylethyl)-1,3a,4,11c-tetrahydro-3*H*-naphtho[1',2':5,6]pyrano[4,3clisoxazole (5b) (1.64 g, 33%). M.p. 254-256 °C (hexane/benzene); H-NMR (CDCl₃) δ 1.72 (3H, d, J=6.7), 3.08-3.16 (1H, m), 4.00 (1H, dd, J=7.2, 7.2), 4.10 (1H, dd, J=2.1, 11.4), 4.17-4.27 (3H, overlapping), 5.20(1H, d, J=8.0), 6.99 (1H, d, J=8.9), 7.22-7.42 (6H, m), 7.51 (1H, ddd, J=1.2, 7.9, 8.5), 7.64 (1H, d, J=8.9), 7.74 (1H, d, J=7.9), 8.18 (1H, d, J=8.5); $[\alpha]_0^{25} = -239$ (c = 0.27 CHCl₃); MS: m/z = 331 (M⁺); Anal. Calcd. for C22H21NO2: C, 79.73; H, 6.39; N, 4.23. Found: C, 79.81; H, 6.31; N, 4.17. The above cycloadducts counted for 95% of the crude reaction mixture (NMR analysis). Reaction of aldehyde 1c with hydroxylamine 2. Hydroxylamine 2 (3.5 g, 25.4 mmol) and CaCl₂ (2.8 g, 25.4 mmol) were added to a solution of aldehyde (1c)¹³ (4.4 g, 21.2 mmol) in toluene (400 ml). The mixture was refluxed for 20 h. After filtration of the suspension and evaporation of the solvent, the residue was chromatographed on silica gel column with light petroleum/ethyl acetate 3:1 as eluent. The first fractions gave (-)- $(\alpha R, 3aS, 9bR)$ -8-nitro-1- $(\alpha$ -phenylethyl)-1,3a,4,9b-tetrahydro-3*H*-benzopyrano[4,3-*c*]isoxazole (5c) (1.86 g, 27%) (oil); ¹H-NMR (CDCl₃) δ 1.57 (3H, d, J=6.6), 2.98-3.08 (1H, m), 3.77 (1H, dd, J=6.0, 8.4), 4.05-4.32 (4H, overlapping), 4.43 (1H, d, J=7.8), 6.89 (1H, d, J=9.0), 7.24-7.48 (5H, m), 8.02 (1H, dd, J=2.7, 9.0), 8.33 $(1H, d, J=2.7); [\alpha]_0^{25} = -87 (c = 0.54 \text{ CHCl}_3); \text{MS}: m/z = 326 (\text{M}^+); \text{Anal. Calcd. for } C_{18}H_{18}N_2O_4; C. 66.25; H,$ 5.56; N. 8.58. Found: C, 66.34; H, 5.45; N, 8.70. The last fractions gave (+)- $(\alpha R, 3aR.9bS)$ -8-nitro-1- $(\alpha - 1)$ phenylethyl)-1,3a,4,9b-tetrahydro-3*H*-benzopyrano[4,3-c]isoxazole (4c) (3,66 g. 53%), M.p. 151-152 °C (hexane/benzene); 1 H-NMR (CDCl₃) δ 1.52 (3H, d, J=6.3), 3.26-3.31 (1H, m), 3.93 (1H, q, J=6.3), 4.04 (1H, dd, J=5.9, 8.2), 4.16 (1H, dd, J=2.8, 11.8), 4.23 (1H, d, J=7.8), 4.31 (1H, dd, J=2.8, 11.8), 4.40 (1H, dd, J=8.2, 8.2, 6.83 (1H, d, J=8.9), 7.33-7.38 (1H, m), 7.43-7.50 (4H, m), 7.93-7.99 (2H, m); $[\alpha]_0^{25} = +64$ (c = 1.0 CHCl₃); MS: m/z = 326 (M⁺); Anal. Calcd. for $C_{18}H_{18}N_2O_4$: C, 66.25; H, 5.56; N, 8.58. Found: C, 66.31; H. 5.48; N, 8.49. The above cycloadducts counted for 90% of the crude reaction mixture (NMR analysis). Reaction of aldehyde 1d with hydroxylamine 2. Hydroxylamine 2 (1.7 g, 12.7 mmol) and CaCl₂ (1.4 g, 12.7 mmol) were added to a solution of aldehyde (1d)¹⁴ (1.9 g, 10.6 mmol) in toluene (200 ml). The mixture was refluxed for 36 h. After filtration of the suspension and evaporation of the solvent, the residue was Reaction of aldehyde 1d with hydroxylamine 2. Hydroxylamine 2 (1.7 g, 12.7 mmol) and CaCl₂ (1.4 g, 12.7 mmol) were added to a solution of aldehyde (1d)¹⁴ (1.9 g, 10.6 mmol) in toluene (200 ml). The mixture was refluxed for 36 h. After filtration of the suspension and evaporation of the solvent, the residue was chromatographed on silica gel column with light petroleum/ethyl acetate 5:1 as eluent. The first fractions gave (+)-(αR,3aS,9bR)-3a-methyl-1-(α-phenylethyl)-1,3a,4,9b-tetrahydro-3H-benzopyrano[4,3-c]isoxazole (5d) (0.47 g, 15%) (oil). H-NMR (CDCl₃) δ 1.00 (3H,s), 1.61 (3H, d, J=6.9), 3.51 (1H, s), 3.55, 3.67 (2H, AB, J=8.1), 3.83, 4.19 (2H, AB, J=10.6), 4.20 (1H, q, J=6.9), 6.90-7.01 (2H, m), 7.20-7.43 (5H, m), 7.52-7.58 (2H. m); [α] $_D^{25}$ = +165 (c = 0.26 CHCl₃); MS: m/z = 295 (M *); Anal. Calcd. for C₁₉H₂₁NO₂: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.15; H, 7.23; N, 4.81. The last fractions was richromatographed on silica gel column with light petroleum/ethyl acetate 20:1 as eluent to give (+)-(αR,3aR,9bS)-3a-methyl-1-(α-phenylethyl)-1,3a,4,9b-tetrahydro-3H-benzopyrano[4,3-c]isoxazole (4d) (1.00 g, 32%). M.p. 102-103 °C (hexane/benzene); H-NMR (CDCl₃) δ 1.31 (3H, s), 1.58 (3H, d, J=6.5), 3.73 (1H, s), 3.83, 4.04 (2H, AB, J=10.7), 3.84, 3.98 (2H, AB, J=8.6), 4.29 (1H, q, J=6.5), 6.55 (1H, dd, J=1.1, 7.7), 6.74 (1H, dd, J=7.7, 7.7), 6.82 (1H, d, J=8.0), 7.09 (1H, ddd, J=1.5, 8.0, 8.0), 7.25-7.44 (5H, m); [α] $_D^{25}$ = +9 (c = 0.33 CHCl₃); MS: m/z = 295 (M $^+$); Anal. Calcd. for C₁₉H₂₁NO₂: C, 77.26; H, 7.17; N, 4.74. Found: C, 77.29; H, 7.26; N, 4.63. The above cycloadducts counted for 90% of the crude reaction mixture (NMR analysis). Hydrogenation of 4a with Raney nickel. Raney nickel (720 mg) and HCl 37% (0.15 ml) were added to a solution of 4a (280 mg, 1.0 mmol) in MeOH (25 ml). The mixture was stirred under H_2 for 4 h and then neutralised with NaOH 0.5N. After filtration through celite, the solvent was evaporated under reduced pressure to give (-)-(αR , 3S, 4S)-[2H-3, 4-dihydro-4-(α -phenylethylamino)benzopyran]-3-methanol (6) (170 mg, 60%) (oil). ¹H-NMR (CDCl₃) δ 1.55 (3H, d, J=6.6), 2.16-2.26 (1H, m), 3.40 (1H, s br), 3.92-4.00 (2H, overlapping), 4.08-4.37 (4H, overlapping), 6.73-6.85 (2H, m), 6.94 (1H, d, J=7.6), 7.08-7.17 (1H, ddd, J=1.4, 7.6, 7.6), 7.22-7.38 (5H, m); $[\alpha]_D^{25} = -51$ (c = 0.25 CHCl₃); IR (neat): 3350 cm⁻¹; MS: m/z = 283 (M⁺); Anal. Calcd. for C₁₈H₂₁NO₂: C, 76.30; H, 7.47; N, 4.94. Found: C, 76.20; H, 7.36; N, 4.87. Hydrogenation of 4a with Pd(OH)₂/C. 20% Pd(OH)₂/C (150 mg) and HCl 37% (0.3 ml) were added to a solution of 4a (520 mg, 1.85 mmol) in MeOH (50 ml). The mixture was stirred under H₂ for 4 h and then neutralised with NaOH 0.5N. After filtration through celite, the solvent was evaporated under reduced pressure and the residue was chromatographed on a silica gel column with light petroleum/ethyl acetate 1:1 as eluent. The first fractions gave (αR,3R)-O-[(2H-3,4-dihydro-benzopyran-3-yl)-methyl]-N-(α-phenylethyl)hydroxylamine (7) (110 mg, 21%). M.p. 32 °C (hexane); ¹H-NMR (CDCl₃) δ 1.38 (3H, d, J=6.8), 2.22-2.33 (1H, m), 2.40-2.48 (1H, m), 2.72 (1H, dd, J=5.1, 16.0), 3.55-3.60 (2H, overlapping), 3.70-3.83 (1H, dd, J=9.4, 10.3), 4.09-4.21 (2H, overlapping), 5.60 (1H, s br), 6.75-6.85 (2H, m), 6.98-7.11 (2H, m), 7.24-7.37 (5H, m); IR (nujol): 3260 cm⁻¹; MS: m/z = 283 (M⁺); Anal. Calcd. for C₁₈H₂₁NO₂: C, 76.30; H, 7.47; N, 4.94. Found: C, 76.42; H, 7.63; N, 5.07. The next fractions contained 6 (84 mg, 16%). The last fractions gave (-)-(3S)-(2H-3,4-dihydro-benzopyran)-3-methanol (8) (70 mg, 23%). M.p. 63-64 °C (hexane); ¹H-NMR (CDCl₃) δ 1.48 (1H, s br), 2.23-2.34 (1H, m), 2.59 (1H, dd, J=7.8, 16.4), 2.87 (1H, dd, J=5.7, 16.4), 3.62-3.74 (2H, overlapping), 3.99 (1H, dd, J=7.6, 10.9), 4.29 (1H, ddd, J=1.1, 3.0, 10.9), 6.77-6.87 (2H, m), 7.03.7.11 (2H, m); [α]_D²⁵ = -19 (c = 0.30 CHCl₃); IR (nujol): 3300 cm⁻¹; MS: m/z = 164 (M⁺); Anal. Calcd. for C₁₀H₁₂O₂: C, 73.15; H, 7.37. Found: C, 73.20; H, 7.34. Hydrogenation of 4a with Pd/C in AcOH. 10% Pd/C (150 mg) was added to a solution of 4a (250 mg, 0.90 mmol) in AcOH (12 ml). The mixture was stirred under H₂ for 6 h. After filtration through celite, the solvent was evaporated under reduced pressure to give pratically pure 8 (77 mg, 52%). Hydrogenation of 5a with Pd/C in AcOH. According to the procedure described for 4a, compound 5a (250 mg, 0.90 mmol) gave (+)-(3R)-(2H-3,4-dihydro-benzopyran)-3-methanol (9) (80 mg, 54%). Physical and spectroscopic data were the same as for 8. $[\alpha]_D^{25} = +19$ (c = 0.30 CHCl₃); Anal. Calcd. for $C_{10}H_{12}O_2$: C, 73.15; H, 7.37. Found: C, 73.23; H, 7.48. Hydrogenation of 4b with Pd/C in AcOH. A) 10% Pd/C (100 mg) was added to a solution of 4b (270 mg, 0.81 mmol) in AcOH (100 ml). The mixture was stirred under H₂ for 3 h. After filtration through celite, the solvent was evaporated under reduced pressure to give (-)-(2S)-2,3-dihydro-2-hydroxymethyl-1*H*-naphtho[2,1-b]pyran (10) (114 mg, 66%). M.p. 74-75 °C (hexane); ¹H-NMR (CDCl₃) δ 2.36-2.50 (1H, m), 2.82 (1H, dd, J=7.4, 16.6), 3.18 (1H, dd, J=6.2, 16.6), 3.71-3.85 (2H, overlapping), 4.09 (1H, dd, J=7.5, 10.6), 4.37 (1H, dd, J=3.0, 10.6), 7.05 (1H, d, J=8.9), 7.34 (1H, dd, J=7.6, 8.0), 7.48 (1H, ddd, J=1.0, 7.6, 8.4), 7.61 (1H, d, J=8.9), 7.76 (1H, d, J=8.0), 7.80 (1H, d, J=8.4); α ₀²⁵ = -8.4 (c = 0.25 CHCl₃); IR (nujol): 3365 cm⁻¹; MS: m/z = 214 (M⁺); Anal. Calcd. for C₁₄H₁₄O₂: C, 78.48; H, 6.59. Found: C, 78.53; H, 6.70. *B*) 10% Pd/C (60 mg) was added to a solution of 4b (170 mg, 0.51 mmol) in AcOH (50 ml). The mixture was stirred under H₂ for 24 h. After filtration through celite, the solvent was evaporated under reduced pressure to give (-)-(2S)-2,3,7,8,9,10-hexahydro-2-hydroxymethyl-1*H*-naphtho[2,1-*b*]pyran (12) (69 mg, 62%). M.p. 106-107 °C (hexane); ¹H-NMR (CDCl₃) δ 1.68-1.85 (4H, overlapping), 2.23-2.38 (2H, overlapping), 2.51-2.56 (2H, overlapping), 2.64-2.71 (3H, overlapping), 3.67-3.72 (2H, overlapping), 3.92 (1H, dd, *J*=7.8, 10.6), 4.22 (1H, dd, *J*=8.3, 10.6), 6.63 (1H, d, *J*=8.3), 6.84 (1H, d, *J*=8.3); $[\alpha]_D^{25} = -14$ (c = 0.30 CHCl₃); IR (nujol): 3400 cm⁻¹; MS: m/z = 218 (M⁺); Anal. Calcd. for C₁₄H₁₈O₂: C, 77.03; H, 8.31. Found: C, 77.16; H, 8.48. Hydrogenation of 5b with Pd/C in AcOH. A) According to the procedure described for 4b, compound 5b (300 mg, 0.90 mmol) gave (+)-(2R)-2,3-dihydro-2-hydroxymethyl-1H-naphtho[2,1-b]pyran (11) (130 mg, 68%). Physical and spectroscopic data were the same as for 10. $[\alpha]_D^{25} = +8.4$ (c = 0.25 CHCl₃); Anal. Calcd. for $C_{14}H_{14}O_2$: C, 78.48; H, 6.59. Found: C, 78.39; H, 6.67. B) According to the procedure described for 4b, compound 5b (270 mg, 0.81 mmol) gave (+)-(2R)-2,3,7,8,9,10-hexahydro-2-hydroxymethyl-1H-naphtho[2,1-b]pyran (13) (116 mg, 66%). Physical and spectroscopic data were the same as for 12. $[\alpha]_D^{25} = +14$ (c = 0.50 CHCl₃); Anal. Calcd. for $C_{14}H_{18}O_2$: C, 77.03; H, 8.31. Found: C, 76.90; H, 8.14. Hydrogenation of 4c with Pd/C in AcOH. 10% Pd/C (110 mg) was added to a solution of 4c (300 mg, 0.92 mmol) in AcOH (30 ml). The mixture was stirred under H_2 for 7 h. After filtration through celite, the solvent was evaporated under reduced pressure. The residue was treated with NaOH 0.5N and extracted with CH₂Cl₂. The organic phase was separated, dried on Na₂SO₄ and evaporated to give (-)-(3S,4S)-(2H-4,6-diamino-3,4-dihydro-3-methyl-benzopyran)-3-methanol (16) (95 mg, 53%). M.p. 138-139 °C (hexane/benzene); ¹H-NMR (D₂O) δ 2.22-2.31 (1H, m), 3.63, 3.76 (2H, AB part of ABM, J_{AB} =11.3, J_{AM} =8.1, J_{BM} =6.6), 4.04-4.10 (2H, overlapping), 4.16 (1H, dd, J=3.4, 11.1), 6.72 (2H, s), 6.80 (1H, s); [α]_D²⁵ = -43 (c = 0.11 EtOH); IR (nujol): 3360, 3280, 3200 cm⁻¹; MS: m/z = 194 (M⁺); Anal. Calcd. for C₁₀H₁₄N₂O₂: C, 61.84; H, 7.27; N, 14.42. Found: C, 61.67; H, 7.15; N, 14.29. Hydrogenation of 5c with Pd/C in AcOH. According to the procedure described for 4c, compound 5c (125 mg, 0.38 mmol) gave (+)-(3R,4R)-(2H-4,6-diamino-3,4-dihydro-3-methyl-benzopyran)-3-methanol (17) (38 mg, 51%). Physical and spectroscopic data were the same as for 16. $[\alpha]_D^{25} = +41$ (c = 0.14 EtOH); Anal. Calcd. for $C_{10}H_{14}N_2O_2$: C, 61.84; H. 7.27; N. 14.42. Found: C. 61.96; H. 7.39; N. 14.57. Hydrogenation of 4d with Pd/C in AcOH. 10% Pd/C (50 mg) was added to a solution of 4d (130 mg, 0.44 mmol) in AcOH (8 ml). The mixture was stirred under H₂ for 6 h. After filtration through celite, the solvent was evaporated under reduced pressure. The residue was treated with NaOH 0.5N and extracted with CH₂Cl₂. The organic phase was separated, dried on Na₂SO₄ and evaporated to give (-)-(3S,4S)-(2H-4-amino-3,4-dihydro-3-methyl-benzopyran)-3-methanol (14) (75 mg, 88%). M.p. 95-96 °C (hexane); ¹H-NMR (CDCl₃) δ 0.86 (3H, s), 2.48 (3H, s), 3.63 (1H, d, J=11.5), 3.67 (1H, s), 3.83 (1H, d, J=11.5), 3.88 (1H, dd, J=1.2, 11.4), 4.27 (1H, d, J=11.4), 6.83 (1H, d, J=8.1), 6.91 (1H, dd, J=7.2), 7.14-7.20 (2H, m); α ₁D²⁵ = -59 (c = 0.28 EtOH); IR (nujol): 3425, 3240 cm⁻¹; MS: m/z = 193 (M⁺); Anal. Calcd. for C₁₁H₁₅NO₂: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.29; H, 7.75; N, 7.17. Hydrogenation of 5d with Pd/C in AcOH. According to the procedure described for 4d, compound 5d (200 mg, 0.68 mmol) gave (+)-(3R,4R)-(2H-4-amino-3,4-dihydro-3-methyl-benzopyran)-3-methanol (15) (117 mg, 89%). Physical and spectroscopic data were the same as for 14. $[\alpha]_D^{25} = +56$ (c = 0.14 EtOH); Anal. Calcd. for $C_{11}H_{15}NO_2$: C, 68.37; H, 7.82; N, 7.25. Found: C, 68.39; H, 7.77; N, 7.21. X-Ray diffraction analysis of 4b and 4d. ¹⁵ Unit cells parameters and intensity data were obtained on Enraf-Nonius CAD-4 diffractometer. Calculations were performed with the SDP software ¹⁶ on a MicroVax-3100 computer. The cell dimensions were determined by least-squares fitting of 25 centered reflections monitored in the range 30<θ<35° for 4b and 35<θ<40° for 4d. Correction for Lp and empirical absorption ¹⁷ were applied. Both the structures were solved by direct-methods (SIR88). ¹⁸ The non-hydrogen atoms were refined anisotropically by full-matrix least-squares. All the hydrogen atoms were found in the difference Fourier map, in structure 4d inserted with an overall isotropic atomic displacement parameter equal to 5.0 Å² and not refined, while in structure 4b their atomic displacement parameters were kept proportional (× 1.3) to those of their neighbouring non-H atoms. Secondary extinctions ¹⁹ were applied. Atomic scattering factors were taken from in ref. 20. Pertinent experimental details are given in Table 3. Diagrams of the molecular structure were performed by ORTEP program²¹ showing 30% probability displacement ellipsoids. Table 3. Crystal Structure Analysis: Experimental Details | | 4b | 4d | |-------------------------------|-------------------------------------------------|-----------------------------| | Formula | C ₂₂ H ₂₁ NO ₂ | $C_{19}H_{21}NO_2$ | | MW | 331.42 | 295.38 | | Crystal Size mm | $0.9 \times 0.4 \times 0.4$ | $0.6 \times 0.3 \times 0.4$ | | Crystal Colour | colourless | colourless | | System | orthorhombic | monoclinic | | Space Group | $P2_12_12_1$ | P2 ₁ | | a Å | 9.478(1) | 10.150(1) | | bÅ | 10.463(1) | 8.206(1) | | c Å | 17.618(1) | 10.472(1) | | $lpha$ $^{\circ}$ | 90 | 90 | | B° | 90 | 112.96(1) | | γ° | 90 | 90 | | V Å ³ | 1747.1(3) | 803.1(1) | | Z | 4 | 2 | | Deale, Mg × m ⁻³ | 1.260 | 1.221 | | |) graphite monochromated | | | μ mm -1 | 0.599 | 0.589 | | T K° | 295(2) | 295(2) | | θ range ° | 2 - 70 | 2 - 76 | | Scan Mode | ω - 2θ | ω - 2θ | | Refls. Measured | 0 < h < 11 | $-12 \le h \le 12$ | | | $-12 \le k \le 12$ | -5 < k < 10 | | | 0 < 1 < 21 | 0 < 1 < 13 | | Tot. Refls. Meas. | 3526 | 3052 | | Unique Reflections | 1897 | 1798 | | Obs. Refls. $[I > \sigma(I)]$ | 1874 | 1787 | | R* | 0.051 | 0.035 | | R** | 0.051 | 0.031 | | Refined Parameters | 227 | 200 | ^{*} $R = \Sigma ||Fo| - |Fc|| / \Sigma ||Fo||$; ** $Rw = [\Sigma w(|Fo| - |Fc|)^2 / \Sigma w(Fo)^2]^{1/2}$ Acknowledgements: We are grateful to MURST and CNR for financial support. ## References and Notes - 1. Bowers, W.S.; Ohta, T.; Cleere, J.S.; Marsella, P.A. Science 1976, 193, 542. - 2. Ellis, G.P.; Lockhart, I.M. Chromans and Tocopherols, Wiley-Interscience: New York, 1981. - 3. Sargers, R.; Bordner, J.; Dominy, B.W.; Peterson, M.J.; Whipple, E.B. J. Medic. Chem. 1985, 28, 1716. - 4. Evans, J.M.; Stemp, G. Chem. Brit. 1991, 27, 439. - 5. Prous, J.R. Drugs Future 1991, 16, 264. - Podona, T.; Guardiola-Lemaître, B.; Caignard, D.-H.; Adam, J.; Pfeiffer, B.; Renard, P.; Guillauret, G. J. Medic Chem. 1994, 37, 1779. - 7. Mouysset, G.; Payard, M.; Grassy, G.; Tronche, P.; Dabire, H.; Mouille, P.; Schmitt, H. Eur. J. Medic. Chem. 1987, 22, 539. - Fröstl, W. Eur. Pat. Appl. EP 252005 (Chem. Abs. 1988, 108, 167322s). Fröstl, W.; Zuest, A. U.S. US 4957928 (Chem. Abs. 1991, 114, 247141w). - 9. Curran, D.P. in Advances in Cycloaddition, Curran, D.P. Ed.; JAI Press: London, 1988, pp. 129-189. - 10. Compound 2 was prepared from the commercially available (R)-α-phenylethylamine by the literature procedure: Wovkulich, P.M.; Uskokovic, M.R. Tetrahedron 1985, 41, 3455. - 11. Claisen, L.; Eisleb, O. Ann. 1913, 401, 95. - 12. Brain, E.G.; Doyle, F.P.; Mehta, M.D.; Miller, D.; Nayler, J.H.C.; Stove, E.R. J. Chem. Soc. 1963, 491. - 13. Shimizu, T.; Hayashi, Y.; Teramura, K. Bull. Chem. Soc. Jpn. 1985, 58, 397. - 14. Kim, K.M.; Kim, H.R.; Ryu, E.K. Heterocycles 1993, 36, 497. - 15. Atomic coordinates, bond lengths and angles, and displacement parameters have been deposited at the Cambridge Crystallographic Data Center and are available on request from N. Sardone. - Frenz, B.A. and Associated Inc., SDP Structure Determination Package, College Station, Texas, USA, and Enraf-Nonius, Delf, The Netherlands, 1985. - 17. North, A.C.T.; Phillips, D.C.; Mathews, F.S. Acta Cryst. 1968, A24, 351. - Burla, M.C.; Camalli, M.; Cascarano, G.; Giacovazzo, G.; Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Cryst. 1989, 22, 389. - 19. Zachariasen, W.H. Acta Cryst. 1963, A16, 1139. - International Tables for X-ray Crystallography, Kynochn Birmingham, England, Vol. 4, 1974, pp. 99-101 and 149-150. - Johnson, C.K., ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Oak Ridge TN, USA, 1976.